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Introduction

Essential cellular functions are carried out by networks 
of interacting proteins that exist in large dynamic and 
heterogeneous assemblies. Understanding the interac-
tions within these assemblies is vital to understanding 
the function of the cell. Many structural studies focus on 
well-defined stable cores for high-resolution structure 
determination, primarily by X-ray crystallography. For 
intact protein assemblies, much insight has been gained 
from electron microscopy (EM); however, it is often dif-
ficult to assign subunits within EM density maps due to 
the relatively low resolution that is attained. Mass spec-
trometry (MS) has become a powerful adjunct to struc-
tural biology since the introduction of soft ionization 
techniques, specifically electrospray (ES), and special-
ized instrumentation that maintains noncovalent inter-
actions of large protein complexes (Sobott et al., 2002a; 
Hernández and Robinson, 2007).

Since noncovalent interactions can be maintained, 
MS in theory, offers a powerful approach for establishing 
the integrity of the several hundred putative protein com-
plexes proposed from tandem-affinity purification (TAP) 

and proteomic studies of budding yeast (Gavin et  al., 
2006). Although the composition of these complexes 
was determined from standard proteomics techniques, 
subunit interaction maps and topological restraints were 
not defined. MS of an intact complex isolated via TAP can 
characterize its heterogeneity, composition, and stoichi-
ometry (Hernández et al., 2006; Figure 1). Subunit inter-
action maps are then obtained by generating overlapping 
subcomplexes, primarily using solution phase disruption 
techniques. Gas-phase dissociation processes, however, 
in general, lead to the unfolding of a peripheral sub-
unit (Jurchen and Williams, 2003; Benesch, 2009; Boeri 
Erba et al., 2010; Pagel et al., 2010). Tandem MS enables 
selection and interrogation of individual charge states 
in a mass spectrum (Figure 1). Therefore, it allows the 
unambiguous identification of mass and composition of 
a subcomplex or complex of interest.

Extensive information on interaction networks can 
be obtained from mild in-solution disruption of the 
intact complex. By carefully adjusting ionic strength, 
pH or addition of various organic solvents, hydrophilic 
or hydrophobic interactions between subunits can be 
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Figure 1.  General introduction to mass spectrometry (MS) and ion mobility (IM)-MS, and their application in structural biology. From either 
an isolated protein complex or individual proteins, MS and IM-MS enable determination of the (i) composition and stoichiometry of protein 
subunits, (ii) dynamic interactions involving the exchange of protein subunits, (iii) the assembly pathway of a complex from individual 
subunits or subcomplexes, (iv) the overall topology and arrangement of subunits, and (v) the collision cross sections of complex or protein 
ions. Considering each aspect in turn, (i) Composition and stoichiometry of the protein complex can be determined following either gas-
phase or solution-phase disruption techniques. In the gas phase, tandem MS allows isolation of a peak of interest which is subsequently 
subjected to gas-phase activation. This leads to unfolding of a peripheral subunit of the protein complex, which dissociates leaving a 
“stripped” subcomplex. For solution-phase disruption, addition of small quantities of organic solvent or adjusting the pH or ionic strength 
of the complex-containing solution typically generates subcomplexes. (ii) Dynamics within the protein complex can be monitored by the 
exchange of protein subunits between complexes. In general, labelled proteins (heavy which maybe either “tagged” or labelled isotopically) 
are incubated with unlabelled proteins (light) and the composition of the intact complex is observed as a function of time. (iii) The assembly 
pathway of a protein complex can be determined by introducing proteins individually or in combination to explore the subunit interactions 
of stable intermediate subcomplexes. (iv) An interaction map can be constructed from subcomplexes identified by tandem MS after solution 
disruption experiments leading to the determination of its 3D architecture. (v) The collision cross section is determined from the drift time 
of ions separated according to their transmission through a gas-filled mobility cell. Larger ions travel more slowly than smaller ions, resulting 
in longer drift times. All the information gathered from these MS and IM-MS approaches contributes to other structural biology techniques 
to enable so-called “hybrid” structure determination (Robinson et al., 2007). AFM, atomic force microscopy (Thirlway et al., 2004); EM, 
electron microscopy (Mayanagi et al., 2009); NMR, nuclear magnetic resonance (Keniry et al., 2006); and X-ray crystallography (Jeruzalmi 
et al., 2001).-
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disrupted (Figure 1; Hernández et  al., 2006; Hernández 
and Robinson, 2007; Levy et al., 2008; Zhou et al., 2008; 
Sharon et  al., 2009). As such, the nature and strength 
of subunit interfaces within an intact complex can be 
inferred. From the information gathered from both 
gas-phase and solution dissociation experiments, the 
connectivity map can be drawn using suitable software 
packages (e.g., SUMMIT; Taverner et al., 2008). This algo-
rithm uses an exhaustive search for masses that sum to 
the target mass over all allowed stoichiometries within a 
given error range and draws the shortest network path-
way that connects all subunits with their interaction 
partners.

Given the ability to maintain interactions in protein 
assemblies in the gas phase (Loo, 1997; Ashcroft, 2005; 
Sharon and Robinson, 2007; Heck, 2008), MS offers 
an opportunity to monitor directly the assembly path-
way from component subunits as well as the real-time 
dynamics of subunit exchange (Figure 1; Sobott et  al., 
2002b; Painter et al., 2008). For the analysis of assembly 
pathways, component subunits can be introduced either 
individually or in combination to probe the stable inter-
mediate subcomplexes. For subunit exchange experi-
ments, the composition of the intact complex is monitored 
as a function of time after incubation of complexes with 
isotopically labelled proteins or subunits with sequence 
modifications or mass tags. This approach allows extrac-
tion of real-time kinetics and subunit exchange mecha-
nisms (Aquilina et  al., 2005; Keetch et  al., 2005; Hyung 
et al., 2010; Smith et al., 2010).

Over the past few years, ion mobility mass spec-
trometry (IM-MS) has emerged as an effective means of 
studying the overall topology of multiprotein complexes 
(Figure 1; Loo et  al., 2005; Kaddis et  al., 2007; Ruotolo 
et al., 2008; Uetrecht et al., 2010). Application of IM-MS 
has been rapidly increasing since the introduction of 
commercially available instrumentation (Pringle et  al., 
2007). In most ion mobility experiments, ions are sepa-
rated in a cell, filled with neutral gas, and subjected to 
a weak electric field. Large ions undergo more collisions 
with neutral gas and travel more slowly than smaller ions, 
giving rise to longer drift times. Changes in drift time 
can be indicative of conformational changes in protein 
complexes, for example, in response to ligand binding 
(Ruotolo et al., 2005). After careful calibration, drift times 
are converted to collision cross sections (CCS), which are 
averaged over all possible orientations of ions. The CCS 
value is then compared with a theoretically calculated 
CCS produced for a series of trial structures, generated by 
molecular modelling and calculated using the program 
MOBCAL (Mesleh et al., 1996). The detailed protocol for 
data collection and interpretation of MS and ion mobility 
data are described elsewhere (Ruotolo et al., 2008; Scarff 
et  al., 2008; Smith et  al., 2009). Accumulating evidence 
suggests that a protein complex in the gas phase under 
appropriate conditions can preserve their overall topol-
ogy in the absence of bulk solvent. This suggests great 
promise for the application of IM-MS in structural biology 

(Ruotolo et al., 2005; Lorenzen et al., 2008; Uetrecht et al., 
2008; Pukala et al., 2009; van Duijn et al., 2009).

In this review, we discuss the application of MS and 
IM-MS, focussing on protein machines that function 
with nucleic acids. We begin by reviewing one of the first 
investigations of the potential of IM-MS for maintaining 
the topology of a protein-nucleic acid complex in the gas 
phase. Using the well-characterized complex, the trp RNA 
binding attenuation protein (TRAP), its overall topology 
was explored in apo and holo forms, revealing that its 
characteristic ring-shaped topology can be preserved in 
the mass spectrometer (Ruotolo et al., 2005). Following 
this study, different recombinant subunits are used to 
probe the assembly pathway and dynamics of the clamp 
loader of the Escherichia coli DNA replicase (Park et al., 
2010). Subsequently, the conformational changes within 
the clamp loader were probed using IM-MS (Politis 
et  al., 2010). More heterogeneous are the endogenous 
RNA polymerase complexes. We review MS studies of 
the stoichiometry and composition of yeast RNA poly-
merase II and present a 3D model structure of the initia-
tion heterotrimer of RNA polymerase III constrained by 
CCS analysis (Lane et  al., 2011). Related to these RNA 
polymerase studies, we describe recent progress in deci-
phering a subunit interaction map for a coactivator of 
the RNA polymerase, the mediator complex. Focussing 
on the middle module of the complex, the authors inves-
tigate interaction modules as well as their overall topol-
ogy and conformational heterogeneity (Koschubs et al., 
2010). Building on the theme of complexity and dynam-
ics, we review the total interaction map of the 13-subunit 
eukaryotic initiation factor 3 complex (eIF3), isolated 
directly from HeLa cells while associated to the human 
40S ribosomal subunit. We show how subunit interaction 
data can be fitted into EM density maps, guided by CCS 
analysis of different heteromers and “footprinting” of an 
internal ribosome entry site RNA (Zhou et al., 2008).

All of the protein-nucleic acid complexes described 
in this review have different levels of structural informa-
tion, from complete and incomplete atomic structures 
through to low-resolution EM density maps with no high-
resolution structural data. Many are complicated by their 
inherent heterogeneity and dynamics. Consequently, 
these protein-nucleic acid systems serve to illustrate the 
role of MS and IM-MS when applied in combination with 
X-ray crystallography, computational modeling, and 
cryo-electron microscopy. Specifically, we show how this 
so-called hybrid structural approach (Robinson et  al., 
2007) can reveal new insights into the structure and func-
tion of complex protein-nucleic acid machineries.

Evidence for protein structure in the gas phase
Many examples have been reported in which subunit 
interactions within a protein complex can survive in gas 
phase. Until recently, however, it was unclear whether 
these gas-phase complexes could maintain their overall 
topology in the absence of bulk water. To assess the topol-
ogy of a protein complex with a well-defined 3D structure, 
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the TRAP complex was studied by IM-MS (Ruotolo et al., 
2005). TRAP assembles into a well-characterized oli-
gomer with eleven ~8 kDa subunits in a ring topology. The 
structure was established from X-ray analysis of TRAP in 
the presence of tryptophan (Antson et  al., 1995, 1999) 
and the mechanism of tryptophan binding to TRAP was 
established by MS (McCammon et al., 2004). In the mass 
spectrum of apo TRAP, four charge states are observed 
(Figure 2A). Arrival time distributions for each charge 
state were recorded and then converted to CCS. The low-
est charge (19+) has a value that is in close agreement with 
the value calculated from the X-ray structure (6600 Å2). 
The 20+ charge state has a bimodal distribution, indicat-
ing retention of some native-like structure together with 
buckling of the ring (Figure 2C top). Stability of TRAP 
increases upon tryptophan binding (Antson et al., 1999) 
but little change is observed in the mass spectrum, and 
the maximum CCS measured remains constant between 
the apo and Trp-bond forms. This is expected since tryp-
tophan associates between TRAP subunits. However, 
the bimodal distribution observed for the apo form is 
no longer observed, reflecting an increase in the stabil-
ity of the ring structure (Figure 2C middle). It has also 
been established that binding a 53-base segment of the 
trp leader mRNA in the presence of tryptophan stabilizes 

the TRAP complex (McCammon et  al., 2004). A 12% 
increase in the overall CCS of TRAP in the presence of 
RNA and tryptophan is observed in comparison with apo 
TRAP (Figure 2B and 2C bottom). Since RNA binding at 
an internal site would add only marginally to the overall 
CCS of TRAP, this increase implies that RNA binds to the 
periphery of the protein complex, increasing the CCS as 
would be anticipated from the X-ray structure. Structural 
heterogeneity detected for apo TRAP is not observed 
for the TRAP-tryptophan-RNA complex, in agreement 
with the rigidity of the ring structure conferred by RNA 
binding. This study opened up a myriad of applications 
of IM-MS for studying structural changes within protein 
complexes.

Defining assembly, dynamics, and subunit 
architecture
Many structural and biochemical techniques rely on 
highly homogenous soluble protein subunits in relatively 
high concentrations. While these properties are also 
advantageous for MS, only a few micro-liters of micro-
molar protein concentration are required, once appro-
priate buffer conditions are identified (Hernández and 
Robinson, 2007). This means that many different reac-
tions can be investigated without large consumption of 
protein. This property was used to good effect in a recent 
investigation of the assembly of the clamp loader com-
plex involved in DNA replication (Park et al., 2010). The 
DNA polymerase III (Pol III) holoenzyme is part of the 
replication machinery. One of its three subassemblies, 
the clamp loader complex, is responsible for loading/
unloading of another subassembly, the β

2
 sliding clamp 

(Naktinis et  al., 1995; Johnson and O’Donnell, 2005; 
Schaeffer et al., 2005). The clamp loader complex is com-
posed of seven subunits: three of either τ, γ or δ, δ', ψ and 
χ. (τ/γ)

3
δδ' which form a central ring that performs the 

central ATPase activity (Dallmann and McHenry, 1995). 
The peripheral ψχ heterodimer connects the clamp 
loader complex with other subunits within the holoen-
zyme (Xiao et al., 1993a, 1993b). Unusually, τ and γ are 
translated from the same gene, dnaX, and share the same 
three N-terminal domains that are essential for the clamp 
loader (Tsuchihashi and Kornberg, 1990). Recombinant 
expression of all six proteins enabled a comprehensive 
evaluation of the assembly mechanism through the 
analysis of many different subunit combinations.

The composition of the clamp complex was deduced 
by X-ray crystallography of the γ

3
δδ' ring. Previous stud-

ies had suggested that τ/γ exist in both monomeric and 
tetrameric forms, interestingly not as a trimer (Dallmann 
and McHenry, 1995). Therefore, the mechanism by 
which monomers and tetramers of τ/γ, in the presence 
of δδ', were converted into trimers was ambiguous. 
Mass spectra of individual recombinant subunits of τ 
and γ confirmed that both τ and γ exist predominately 
as tetramers, in equilibrium with monomers and also 
dimers and trimers (Figure 3A). In a systematic investiga-
tion of interactions among the components of the clamp 
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Figure 2.  IM-MS data for the  trp RNA binding attenuation 
protein (TRAP) complex in the presence and absence of ligands. 
Mass spectra of apo-TRAP (A) and TRAP-RNA-tryptophan (B) 
and IM data for the 20+ ion of apo-TRAP (top), TRAP-tryptophan 
(middle), and TRAP-RNA-tryptophan (bottom) are shown 
(C). Two model structures of TRAP (ring and collapsed ring) 
are represented in blue and green, respectively, in a space-
filling representation. The collision cross sections (CCS) values 
corresponding for the two models are shown in blue and green 
dashed line. The red dashed line represents CCS of the TRAP-
RNA-tryptophan crystal structure. The crystal structure of the 
TRAP-RNA-tryptophan complex (PDB ID: 1C9S; Antson et  al., 
1995) is illustrated using the program SIB Swiss PDB viewer 
(blue: TRAP, red: trphytophan, and silver: RNA).
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loader, δ' was identified as an initiator that dissociates the 
τ/γ tetramer into smaller oligomeric species (Figure 3B). 
Only after association of δ' can δ bind and stabilize the 
trimeric form of τ/γ, thus completing the pentameric 
ring of (τ/γ)

3
δδ' (Figure 3C). The ψχ heterodimer further 

ensures the correct stoichiometry of τ/γ by stabilizing the 
τ/γ trimers in the presence of δ' (Figure 3D).

One of the great advantages of MS is the rapid time 
frame for recording spectra, enabling observation of 
dynamic and transient interactions in real time (Sharon 
and Robinson, 2007). In particular, monitoring subunit 
exchange can determine kinetics of the assembly pro-
cesses (Hyung et al., 2010). This can be readily achieved 
by exchanging a subunit with a subunit that differs in 
mass but with identical structural properties (e.g., isoto-
pically labelled or tagged). As mentioned above, τ and γ 
share three identical domains that associate with δδ' to 
assemble the clamp loader complex. Therefore, all forms 
of (τ/γ)

3
δδ' can function as the clamp loader. However, 

at least two τ subunits are required in the clamp loader 
complex to bind to the polymerase and helicase dur-
ing DNA replication. Since both τ and γ are synthesized 
from the same gene, it is interesting to consider how cells 
avoid clamp loaders with less than two τ subunits during 
replication. MS is ideally placed to investigate this ques-
tion using subunit exchange experiments.

Equimolar solutions of τ and γ complexes were 
allowed to exchange subunits in the absence of other 
proteins. The resulting mass spectra recorded after vari-
ous time intervals showed that all five possible tetrameric 

species (τ
4
, τ

3
γ, τ

2
γ

2
, τγ

3
, and γ

4
) were formed rapidly 

within the dead time of the experiment and in a statis-
tical distribution (Figure 4A). However, in the presence 
of δδ', exchange occurs on a much longer time scale 
(Figure 4B). Interestingly, this exchange is slower than 
the time required for chromosome replication (~40 min). 
As a consequence, although all forms of the clamp loader 
complex exist in cells, once the replisome is formed, 
with either τ

3
δδ' or τ

2
γδδ', further exchange of τ and γ is 

prevented. Consequently, while considerable structural 
information is available for this complex, these subunit 
exchange experiments enable an investigation of the 
dynamics of the assembly process.

High-resolution atomic coordinates of the γ complex 
have been reported (Jeruzalmi et  al., 2001). However, 
large sections of the protein sequence are not present in 
these structures. Moreover, structures of the individual 
subunits of γ and δ have not been determined. From 
the assembly pathway, it was suggested that δ' serves as 
the anchor that stabilizes the flexible γ and δ subunits. 
To investigate any conformational changes in indi-
vidual subunits, with or without δ', ‘IM-MS was applied 
(Politis et al., 2010). All three subunits are related and 
have three similar domains although only γ can bind 
ATP. Interestingly, little difference was observed for 
the X-ray structures of δ' within the γ complex and in 
isolation, indicating structural rigidity in δ' (Guenther 
et  al., 1997; Jeruzalmi et  al., 2001). Furthermore, the 
experimental CCS value of the individual δ' subunits 
corresponded well with the X-ray structure (Jeruzalmi 
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Figure 3.  Assembly pathway of the clamp loader revealed by MS. Each individual subunit of the E. coli clamp loader complex, τ
3
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3
δδ'ψχ. 
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et al., 2001). In contrast, CCS values that are 10% lower 
than calculated were observed for γ and δ, even when 
taking into account residues that are absent from the 
structure. This indicates that γ and δ adopt compact 
conformations in contrast to δ'. Model structures of 
compact γ oligomers are assembled by using a coarse-
grained (CG) approach (Figure 5A and 5B). In this case, 
the three domains of γ was represented as overlapping 
spheres to generate models of γ that include residues 
not present in the X-ray structure. These compact con-
formations maybe attributed to the innate flexibility in 

γ and δ, important for their catalytic activity in the γ 
complex.

The role of δ' was rationalized as the provider of the 
static interface for γ and δ and to confer stability to the γ 
complex. This speculation was further supported by model 
structures built for the γ

3
δ' and γ

2
δ' subcomplexes, taking 

into account residues not present in γ (~13%)(Figure 5c). 
These models were consistent with the tertiary structure 
of γ being maintained as seen in the X-ray structure. The 
full model structure of the γ complex also suggested that 
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according to CCS. Experimental CCS values of the γ oligomers are 
shown in black. The compact arrangement mined from the atomic 
structure of γ in the crystal structure of γ

3
δδ' is shown in blue and 

provided the closest to the experimental CCS. (B) Building the γ 
oligomers sequentially, starting from the full length γ monomer 
based on the crystal structure (i–ii) and higher oligomeric species 
of γ (iii–v). (i) CG model of γ was represented with three spheres, 
corresponding to each domain. (ii) a model of γ in a more compact 
form. (C) CG model structures for γ

2
δ', γ

3
δ', and γ

3
δδ' complexes. 

The experimental CCS (Exp) and theoretically calculated CCS of a 
model (Calc) are shown in Å2.
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γ and δ no longer adopt a compact conformation in the 
presence of δ'. These results show the applicability of 
combining modeling and IM-MS to elucidate structural 
changes during heterocomplex assembly.

Identifying stable modules and structural flexibility
RNA polymerases transcribe DNA into RNA, are essen-
tial to life and conserved through all organisms. Three 
different types of RNA polymerases (I, II, and III) exist in 
eukaryotes and are responsible for synthesizing rRNA, 
mRNA, and tRNA, respectively. RNA polymerases share 
many similarities in their stable cores. RNA Pol I and III 
contain additional subunits that confer differences in 
their specificity and functionality. Detailed structural 
and functional analysis of RNA Pol II has contributed to 
a basic framework for understanding other polymerases 
(Armache et al., 2003; Kettenberger et al., 2003; Armache 
et  al., 2005; Cramer et  al., 2008; Kostrewa et  al., 2009). 
However, complexity and heterogeneity in RNA Pol I and 
Pol III have hindered high-resolution structural studies 
and only cryo-EM reconstructions are available to date 
(Fernández-Tornero et al., 2007; Kuhn et al., 2007).

RNA Pol III is the most complex polymerase of the 
three, comprising 17 subunits with a molecular weight 
of around 700 kDa. In comparison, Pol I and II consist of 
14 and 12 subunits with molecular masses of ~600 and 
500 kDa, respectively. Five subunits unique to RNA Pol 
III form two subcomplexes, C53/C37 and C31/C82/C34. 
The C53/C37 heterodimer is involved in termination and 
together with C11, re-initiation downstream of the DNA 
(Landrieux et al., 2006). The C31/C82/C34 heterotrimer 
has a number of roles including transcriptional initiation 
of tRNA, unwinding of the dsDNA and open complex 
formation, and recognition of the transcription factor 
(TF) IIIB (Werner et al., 1992; Bartholomew et al., 1993; 
Thuillier et al., 1995; Brun et al., 1997; Wang and Roeder, 
1997). However, it remains unclear how the specific sub-
units are arranged and assembled with respect to the 
structural core of the 12 subunits of Pol II.

MS of endogenous RNA Pol III purified from yeast cells 
identified an intact complex with 17 subunits (Lorenzen 
et al., 2007; Lane et al., 2011). In addition, minor species 
of Pol III in the absence of two subunits, C53 and C37, 
were observed, indicating the peripheral position of the 
two subunits. By tagging C53, the C53/C37 heterodimer 
was isolated and its ease of dissociation from the core 
suggested that the C-terminus of C53, where the TAP tag 
is located, contacts the core. The labile association of C53/
C37 fits its role in recognizing terminator elements in Pol 
III and is consistent with its peripheral location identified 
in EM studies (Fernández-Tornero et al., 2007).

Subassemblies of RNA Pol III were generated at high 
pH and include the stable C31/C82/C34 heterotrimer, 
the C82/C31, and C25/C17 heterodimers as well as many 
individual subunits, ABC10α, ABC23, C11, C82, and C34 
(Figure 6A). To investigate the topological arrangement 
of C31/C82/C34 heterotrimer, the recombinant com-
plex was produced and subjected to high salt solution 

conditions to determine subunit connectivity. Two het-
erodimers, C82/C31 and C82/C34, were observed. C31/
C34 was not observed under any conditions, suggesting 
a linear arrangement of C31/C82/C34 with C82 bridging 
C31 and C34. This observation was in contrast to the C31/
C34 interaction deduced from yeast two-hybrid assays 
(Flores et  al., 1999) and an alternative linear arrange-
ment of C31/C34/C82 proposed previously (Lorenzen 
et al., 2007).

The reconstituted transcription bubble readily associ-
ates with RNA Pol III. A remarkably well-resolved mass 
spectrum was recorded, the major species correspond-
ing to the elongation complex that includes the entire 
complex with that transcription bubble (Figure 6B). 
Interestingly, the initiation trimer, C31/C82/C34, leaves 
the enlongation complex more easily than from the apo 
form. This could be a result of the transcription bubble 
weakening the interaction between the trimer and the 
core complex. This observation corresponds well with 
the roles of the translation trimer described above.

In the absence of any high-resolution structural infor-
mation at the subunit level, it is difficult to integrate 
IM-MS data into modelling for large hetro-complexes. 
Therefore, the CG approach outlined above is most suit-
able for modelling unknown structures. IM-MS analysis 
of the C31/C82/C34 heterotrimer and subsequent build-
ing of modules (C31/C82, C82/C34, C34, and C82) led to 
a CG model of the heterotrimer (Figure 6C). Initially, each 
subunit was represented as either one or two spheres 
depending on its mass and shape within the EM density 
(Fernández-Tornero et al., 2007; Pukala et al., 2009; Politis 
et  al., 2010). The relative position and overlap between 
the subunits was defined by the experimental CCS of 
C31/C82 and C82/C34. The model was placed within the 
density difference between the EM structure of Pol III 
(Fernández-Tornero et al., 2007) and the crystal structure 
of Pol II (Cramer et al., 2001; Figure 6C). A considerable 
surface area of the trimer is revealed by this model which 
may be related to its functional role of binding additional 
factors and DNA, bringing them to the polymerase core.

For the RNA polymerases, the crystal structure of 
the core aids interpretation of the data for RNA Pol III. 
However much less structural information is available for 
the Mediator complex, the central coactivator required 
for regulated transcription by RNA Pol II (Björklund and 
Gustafsson, 2005; Kornberg, 2005). The Mediator com-
plex consists of 25 subunits, divided into four structural 
modules: head, middle, tail, and kinase. In a recent MS 
study, the recombinant complete seven-subunit middle 
module (Med1:4:7:9:10:21:31) was observed along with 
six (Med4:7:9:10:21:31) and four (Med7:10:21:31) subunit 
subcomplexes (Koschubs et al., 2010). Subsequent loss of 
Med1, Med4:9 indicated the peripheral position of these 
subunits. Adding small amounts of organic solvents, 
DMSO, or n-propanol further dissociated these assem-
blies. For the six-subunit subassembly, the Med4:9 dimer 
was isolated, confirming direct interaction between these 
two subunits. Dissociation of the four-subunit complex 
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Figure 6.  Mass spectra and model structures of the RNA Pol III subcomplexes and IM-MS analysis of the middle module of the Mediator 
complex. (A) Mass spectrum of RNA Pol III at high pH (30% v/v ammonium hydroxide at pH 10.9) shows dissociation of subunits (ABC10a, 
ABC23, C34, and C82) and subcomplexes (C25/C17, C82/C31, and C34/C82/C31). (B) Mass spectrum of RNA Pol III elongation complex 
shows the intact complex with the transcriptional bubble and additional labile subcomplexes, C82/C31 and C34/C82/C31. (C) A CG model 
of the C34/C82/C31 trimer is shown in three orthogonal orientations. C34 was represented as a single sphere in comparison with two 
overlapping spheres representing multiple domains in C82 and C31. Experimental error (~5%) was accounted for in the model as the 
shaded area. A model was placed in the density difference between the EM map of Pol III and the crystal structure of Pol II (ribbon diagram, 
PDB code: 1 WCM; Armache et  al., 2005). (D) The experimental CCS values of subunit and (sub-) complexes of the Mediator middle 
module are plotted against their masses. The general trend of CCS versus mass for globular proteins is shown as a solid line. (E) The arrival 
time distribution of the four-subunit subassembly Med 7:10:21:31 is shown. Up to six different conformations of the subassembly were 
detected, indicated by six colored lines.
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produced several trimers and dimers; only the Med7 
subunit was present in every complex. This result sug-
gested that Med7 is a central subunit of the middle mod-
ule of the Mediator complex and enabled a preliminary 
subunit interaction map to be deduced.

In order to provide structural information, IM-MS 
analysis of subunits, subassemblies, and the complete 
middle module were obtained. (Figure 6D). The experi-
mental CCS was then compared with the CCS of globular 
proteins. Many individual subunits fit the description 
of globular proteins. For the four- and six-subunit com-
plexes, conformational flexibility of the middle module 
of the Mediator complex was apparent from drift time 
analysis. For the four-subunit complex, the drift times 
suggested up to six different conformations. Interestingly, 
the six-subunit complex has a more elongated conforma-
tion than the seven-subunit complex of the middle mod-
ule. The inherent flexibility observed by IM-MS provides 
a rational for the difficulties encountered in obtaining 
X-ray analysis of this complex. More generally, this study 
demonstrates applicability of IM-MS in capturing the 
dynamic topological nature of protein complexes.

Piecing together a three-dimensional interaction map
Heteromeric protein complexes in theory can provide the 
most detailed interaction maps. Particularly advantageous 
is a diversity of subunit masses and many subcomplexes. 
This combination enables assembly of numerous interact-
ing modules which, if there are a sufficiently high number, 
could allow for a unique arrangement and pseudo 3D 
network. An example of this approach is the eIF3, puri-
fied directly from HeLa cells on the side of the 40S subunit 
(Siridechadilok et al., 2005; Damoc et al., 2007). Eukaryotic 
initiation factors mediate mRNA binding to the 40S ribo-
somal subunit before assembly of active ribosomes for 
protein synthesis. eIF3 consists of 13 different subunits 
and is the largest translation initiation factor (~800 kDa; 
Hinnebusch, 2006). Due to its likely heterogeneity and 
dynamics, no high-resolution structure is available but 
an EM density map defines an irregular particle with five 
distinct appendages (Siridechadilok et al., 2005).

Despite the heterogeneity of the complex, remarkably 
well-resolved mass spectra show a homogeneous popula-
tion of eIF3 with all 13 different subunits present (a, b, c, d, 
e, f, g, h, I, j, k, l, and m; Figure 7A). The peripheral subunits 
of eIF3i, j, k, and l were tentatively assigned by their ready 
dissociation in tandem MS. Overlapping intact subassem-
blies of eIF3 were then characterized by varying the ionic 
strength of the buffer (Figure 7B). Three structural mod-
ules, eIF3(i:g), eIF3(e:l:k), and eIF3(f:h:m), were readily 
observed. At different ionic strength, various large sub-
complexes were isolated, eIF3(c:d:e:l:k) and eIF3(a:b:i:g) 
which are linked by interactions between subunits b and 
c. Using all the information gathered from both the solu-
tion- and gas-phase dissociation experiments, supple-
mented with immunoprecipitation results, a connectivity 
map was deduced using the software package SUMMIT 
(Taverner et al., 2008). The final model of the human eIF3, 

derived from 27 subcomplexes, is consistent with previ-
ous studies of the mammalian eIF3 functional core which 
contains subunits a, b, c, e, f, and h (Masutani et al., 2007). 
The MS study shows how the additional subunits, pres-
ent in the human eIF3, assemble into subcomplexes and 
associate with this stable core (Zhou et al., 2008).

The virus Internal Ribosome Entry Site (IRES) RNA tar-
gets eIF3 for an alternative initiation pathway for protein 
synthesis. The mass spectrum of eIF3 in the presence of 
the hepatitis C virus (HCV) IRES RNA shows an increase 
in m/z, compared with eIF3 alone (Figure 7C and 7D). The 
resolution of the peaks of the eIF3-IRES RNA binary com-
plex is compromised due to the introduction of RNA in the 
binding buffer which contains magnesium. Nonetheless, 
comparison between activated mass spectra of eIF3 and 
eIF3-IRES RNA demonstrates that the large subcomplexes 
are no longer formed while eIF3i and the i:k dimer persist. 
This result indicates that IRES RNA binds and stabilizes 
the large subcomplexes formed with core subunits but 
does not affect the small peripheral subcomplexes.

For eIF3, three subassemblies are frequently 
observed under the high-ionic strength conditions. 
These include two heterotrimers (f:h:m and e:l:k) and 
one heterodimer (l:k; Figure 7B). Interestingly, for 
f:h:m, all possible dimers (f:h, h:m, and f:m) were read-
ily observed, indicating that f:h:m has a trigonal geom-
etry wherein all three subunits interact. In contrast, only 
two dimers (e:l and l:k) are observed for the e:l:k trimer, 
suggesting a linear arrangement. Interestingly, despite 
the higher mass of f:h:m, the average CCS recorded was 
much lower than e:l:k (5545 and 6677 Å2, respectively; 
Figure 8A). This suggests that f:h:m adopts a more com-
pact arrangement compared with e:l:k. 

To model the structural arrangement of both het-
erotrimers, each subunit is modelled initially as a sphere 
where the radius is related to the mass of the subunit. 
Assuming the overlap between the subunits is similar 
in both subassemblies, two models were constructed 
(Figure 8B). The calculated CCS of the elongated model 
of f:h:m is much higher than the observed CCS (green 
dashed line, Figure 8B, top panel) but is in excellent 
agreement with the trigonal arrangement. By contrast, 
the calculated CCS of the compact trigonal model for 
e:l:k is much lower than the observed CCS (blue dashed 
line, Figure 8B, bottom panel) but is consistent with an 
extended linear arrangement. Comparison with the EM 
density map determined for this complex strongly sug-
gests that the subcomplex e:l:k occupies the extended 
linear density (Figure 8C). F:h:m is likely to occupy 
the lower right appendage. This study demonstrates 
the power of IM-MS not only to define a series of sub-
complexes but also to constrain them by their CCS and 
subsequently to fit them into an EM density map.

Summary and future perspectives

It is now established that MS can unravel the compo-
sition, stoichiometry, heterogeneity, dynamics, and 
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interaction maps of protein complexes (Loo, 1997; 
Sharon and Robinson, 2007; Heck, 2008; Zhou and 
Robinson, 2010). Combined with IM, another dimen-
sion of information, the CCS, can be obtained. In this 
review, we focussed on the application of MS and IM-MS 
to four large protein complexes that function in DNA 
and RNA replication and translation. Many attributes 
of the MS-only approach are illustrated by this series of 
four complexes including a broad mass range (up to a 
few MDa), low sample consumption (microlitre quanti-
ties at low micromolar concentration), rapid collection 
and analysis of data (minutes to hours), and the ability to 
observe conformational and compositional heterogene-
ity. To these properties, IM data are able to contribute 
important conformational dynamics, as in the γ com-
plex and the middle module of the mediator complex. 
It is also able to constrain three-dimensional models 

for subcomplexes, enabling their fitting into EM den-
sity maps as was shown for the yeast Pol III and human 
eIF3.

These IM-MS approaches, for protein-nucleic acid 
complexes, are however still in development with many 
challenges remaining. Improved accuracy in CCS measure-
ments for protein complexes was demonstrated recently 
with the publication of a large database of absolute CCS val-
ues. This included many protein complexes and confirmed 
the importance of employing native-like protein complexes 
for accurate and reliable CCS measurements (Bush et al., 
2010). Another limiting factor is the IM resolution that 
affects the analysis of heterogeneous protein complexes. 
In addition to these practical considerations of paramount 
importance is the need for a systematic approach to inte-
grate IM-MS data with existing structural data. Preliminary 
approaches are emerging that combine incomplete atomic 
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structures and CCS values to provide complete models of 
multiprotein complexes (Politis et al., 2010).

As the protein-nucleic acid complexes of interest 
become ever more challenging in terms of their size, com-
plexity, and abundance, it is important to bring to the fore 
all methods that contribute to their structure determina-
tion in so-called “hybrid” structural methods (Robinson 
et al., 2007). The methods described in this review provide 
one such hybrid approach. With the information that can 
be obtained from these MS techniques, it is possible to 
define both the composition and topology of interacting 
modules and consequently to contribute to the overall 3D 
structure of key protein-nucleic acid complexes.
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